
Component Oriented
Programming at OPS4J

Peter Neubauer
Andreas Ronge
Niclas Hedhman

OPS4J

OPS4J

Open Participation Software for Java
Community
 “Wiki brought to coding”

Technically
 Realise the full potential of COP through

 development tools around the OSGi platform
 OSGi components

Commercial
 Provide an easy way to push out commercial code into OSS

based on drop-in Components

The OPS4J COP stack

OSGi
Runtime

Application
bundles

Silk

Hansa

RDF LDAP Maven repos

Java
app

Hansa-bundle protocol-handler

Hansa

Content

The development process
 The runtime - OSGi
 Describe it – RDF
 Store it – Artifact handling and component discovery
 Build it - Silk

OSGi

The Open Services Gateway Initiative is an non-
profit corporation – name no longer applies
OSGi produce specifications for the OSGi Service
Platform:
 A standard for components that needs to be loaded/unloaded at

run-time

OSGi was formed in 1999 at the initiative of IBM,
Sun, Ericsson, Oracle, and Nortel
For OSGi R4 there are at least three OS
implementations: Equinox (Eclipse), Felix (Apache),
Knopflerfish (Gatespace)

OSGi Member Companies

4DHomeNet, Inc.

Acunia

Alpine Electronics Europe Gmbh AMI-C

Atinav Inc.

BellSouth Telecommunications, Inc.

BMW

Bombardier Transportation

Cablevision Systems

Coactive Networks

Connected Systems, Inc.

Deutsche Telekom

Easenergy, Inc.

Echelon Corporation

Electricite de France (EDF)

Elisa Communications Corporation

Ericsson

Espial Group, Inc.

ETRI France Telecom

Gatespace AB

Hewlett-Packard

IBM Corporation

ITP AS

Jentro AG KDD R&D Laboratories Inc.

Legend Computer System Ltd.

Lucent Technologies

Metavector Technologies

Mitsubishi Electric Corporation

Motorola, Inc.

NTT

Object XP AG

On Technology UK, Ltd

Oracle Corporation

P&S Datacom Corporation

Panasonic Patriot Scientific Corp. (PTSC)

Philips ProSyst Software AG

Robert Bosch Gmbh

Samsung Electronics Co., LTD

Schneider Electric SA

Siemens VDO Automotive

Sharp Corporation Sonera Corporation

Application areas

Service gateways
Cars,
Mobile telephony,
Industrial automation,
Building automation,
PDAs,
grid computing,
white goods (e.g. by Bosch und Siemens)
entertainment (e.g. iPronto),
fleet management,
IDEs.

The Framework

The Framework is divided in a
number of layers.
 L0: Execution Environment
 L1: Modules
 L2: Life Cycle Management
 L3: Service Registry

Execution Environment

The L0 Execution environment is the specification of
the Java environment.
 E.g. Java 2 Configurations and Profiles, like J2SE, CDC, CLDC,

MIDP etc.

L1: Modules (bundles)

Defines the class loading policies.
The OSGi Modules layer adds private classes for a
module as well as controlled linking between
modules.
Import/Export of packages
 Versioning
 Resolution of multiple package instances
 Pooling of libraries
 Separation of API/Implementation

L2: Life Cycle Management

Enable bundles to be installed, started, stopped,
updated and uninstalled.

L2: Life Cycle Management

Before activating a service, track its dependencies (imported
packages)
Handling of non-available services expected
R4 introduces “required bundles” that are guaranteed to stay

Tracking required dependencies

starting service

Tracking optional dependencies

starting service

Init Destroy

Start Stop

L3: The OSGi Service Platform

Consists of
 OSGi framework, defines for example:
 application life cycle model

 service registry
 Standard Service definitions, e.g.
 Log, Configuration management, Preferences, Http

Service (runs servlets), XML parsing, Device
Access, Package Admin, Permission Admin, Start
Level, User Admin, IO Connector, Wire Admin,
Universal plug-and-play (UPnP).

 Implementation of these services are optional

L3: Service Registry

Provides a cooperation model for bundles that share
services that comes and goes
 Events are defined to handle the coming and going of services.

Services are Java objects.

L3: What is a Service ?

A Java class or interface
 A.k.a. the Service interface

with Service Properties
 Name and Value pair
 Allow different service providers that provide services with the

same service interface to be differentiated.

that are part of a bundle.
optional: ServiceFactory
 allow custom discovery policies

Services and Bundles

What is a bundle ?
 Jar file containing
 Manifest (manifest.mf)
 classes, other resources (pics etc.)
 other .jar files

 Activator implementation
 library bundles, purely providing exported classes

 clients can't track their reload

What is it responsible for ?
 Providing implementation of Service interfaces
 Run-time service dependency management activities

 publication, discovery and binding
 adapting to changes resulting from dynamic

availability (arrival or departure) of services that are
bound to the bundle.

Deployment of bundles

Each bundle correspond to one JAR file, contains:
 code and resources (i.e., images, libraries)
 The Manifest file - contains information about the bundle

Deployment via URL pointing to bundle .jar
Deployment activities are realized according to a
well defined series of states

Deployment

The manifest is packaged into a JAR file along with
the Java class file
The whole JAR package is actually referred to as a
bundle.
The manifest.mf

Bundle-Activator: tutorial.example1.Activator

Bundle-Name: Service listener example

Bundle-Description: A bundle that displays messages at
startup and when service events occur

Bundle-Vendor: Richard Hall

Bundle-Version: 1.0.0

A Service Example

An example of a service interface:

package tutorial.example2.service;

/**

 * A simple service interface that defines a dictionary service.

 * A dictionary service simply verifies the existence of a word.

**/

public interface DictionaryService

{

 /**

 * Check for the existence of a word.

 * @param word the word to be checked.

 * @return true if the word is in the dictionary,

 * false otherwise. **/

 public boolean checkWord(String word);

}

Bundle will share
this package

The BundleActivator and Service
Implementation

package tutorial.example2;
import …
public class Activator implements BundleActivator {

 public void start(BundleContext context) {
 Properties props = new Properties();
 props.put("Language", "English");
 context.registerService(DictionaryService.class.getName(),
 new DictionaryImpl(), props);
 }

public void stop(BundleContext context) {
// NOTE: The service is automatically unregistered. }

 private static class DictionaryImpl implements DictionaryService
{

public boolean checkWord(String word) {
// the implemenation …

}
}

}

Registers the
Service

Implementation
of the service

This package will not be
shared

Service provider manifest.mf

Bundle-Activator: tutorial.example2.Activator

Export-Package: tutorial.example2.service

Bundle-Name: English dictionary

Bundle-Description: A bundle that registers an English dictionary
service

Bundle-Vendor: Richard Hall Bundle-Version: 1.0.0

One package is
exported !

Service consumers manifest.mf

Bundle-Activator: tutorial.example3.Activator

Import-Package: tutorial.example2.service

Bundle-Name: Dictionary client Bundle-Description: A bundle that
uses the dictionary service if it finds it at startup

Bundle-Vendor: Richard Hall

Bundle-Version: 1.0.0

Accessing the
Service we
defined

The service consumer

public class Activator implements BundleActivator {
 private BundleContext m_context = null;
 private ServiceTracker m_tracker = null;

 public void start(BundleContext context) throws Exception
 {
 m_context = context;
 Filter filter = context.createFilter("(&(objectClass=" +
 DictionaryService.class.getName() + ")" + "(Language=*))");

 m_tracker = new ServiceTracker (context, filter, null);
 m_tracker.open();
}

 public String translate(String word)
 {
 DictionaryService dictionary =
 (DictionarySerivce)m_tracker.getService();

if (dictionary != null)
{
 return dictionary.checkWord(word)
} else
{
 return “”;
}

 }

Tracks suitable
Dictionary services

Some default action

Eclipse and OSGi

In Eclipse 3.0 M6, the original Eclipse Runtime was
replaced with a fully OSGi-based runtime.
Eclipse plugins are now OSGi Bundles !
Eclipse 3.1 OSGi implementation is the R4
specification reference implementation
Equinox is a standalone implementation of OSGi

JSR-277 Java Module System

The specification might be included in JDK7:
 A distribution format (Java Module with metadata)
 A versioning scheme for dependencies
 A repository for storing and retrieving modules
 Runtime support for the loading modules.
 A set of support tools

Overlaps with OSGi !
 ”the versioning semantics in the OSGi R3 framework is

simplistic”
 ”it is impossible to support more than one version of shared

package at runtime. ”

Supporting this JSR
 BEA Systems, Google, Jason Van Zyl, ASF,JBoss, Sun

Microsystems etc. etc.

Summary

OSGi is now used as one Java component model
for J2ME, J2SE and J2EE applications.
Provides a solution for
 Versioning of packages and JAR files
 Dependencies between packages and JAR files
 Class loading issues
 Starting and Stopping of Services

OSGi R4 additions (selected)

A lot of influences from Eclipse development
Service versioning
 possible to have different versions of same service deployed
 Ranges supported
 Package granularity

Declarative Services
 Lazy instantiation of services
 Framework knows of services without activating the bundle

Extension bundles
 make e.g. URLStreamHandler fully replaceable
 additions to boot classpath via bundles (e.g. java.sql.*)

The artifact system (Hansa)

The need for a system that transparently connects
existing applications with repository systems
Existing solutions limited to
 build systems (Maven2 POM)
 runtime solutions (Eclipse bundle manifest, EJB etc.)

The solution: custom protocols
 already used in Eclipse bundle:// content URLs
 in normal Java systems
 non-intrusive
 application does not know about the existence of Hansa

Hansa and Artifacts

Resources exists as Artifacts in repositories
Artifacts can be any type
Each artifact has an unique identifier
 artifact:[type]:[group]/[name]#[version]

Hansa access artifacts by URI
Location independence
 local cache
 remote repository servers (not only file structures)
 dynamic discovery of new servers (Jini etc)

Protocol: artifact

Resources exists as Artifacts
OSGi
 registration via URLStreamHandler service

Plain java:
 Uses an URL protocol handler
 JVM arguments:

 java.protocol.handler.pkgs=org.ops4j.hansa
Code:

URL url = new java.net.URL(”artifact:txt:ops4j/niclas/example#42”)

InputStream is = url.getConnection().getInputStream();

Protocol: link

Links any resource to an URI
Consumer side construct
 suitable for libraries
 will be linked to target URL at runtime

Much like symlinks in Linux
Code:

URI google = new URI("http://www.google.com");

URL linkUrl = new URL("link:my/google");

Class[] type = new Class[] { Link.class };

Link link = (Link) linkUrl.getContent(type);

link.setTargetURI(google);

usage:

URL google = new URL("link:my/google");

Silk – the smooth build system

Sheets
 versioned collection of Strands

Strands
 provides rule sets into the main engine

Rules engine at the core (Drools)
 rules are independent of each other
 triggered via type insertion into the WorkingMemory

Versioning of the whole build process via build
sheets
 referenced as artifacts

All strands are OSGi bundles
 hot redeploy for every build
 multiple versions for multiple builds possible
 multiple builds (and dependency builds) simultaneously
 distributed builds

Silk – Why RDF?

Build systems use and produce resources
RDF = Resource Description Framework
Descriptions for
 Dependencies
 Versions
 Licenses
 Compatibility
 Publishers
 Aggregations etc. etc.

RDF is scalable (Semantic Web)
RDF builds on URIs, transparent via Hansa
RDF is searchable
RDF is publishable (via Hansa)

Silk – Why Rules?

Pure Logic can't be easily overridden (code)
Rules can be intermixed at will, even prioritised
Implicit rules are made visible
 Ant: compile only if the sources are modified

Rules engines provide possibility for DSL
 DSL = Domain Specific Languages
 With DSL the logic is understandable to the Domain Expert (CM)
 special semantic language for build systems possible
 see on that LOP

(http://www.onboard.jetbrains.com/is1/articles/04/10/lop/)

artifact:buildsheet:java#0.1

Silk – the smooth build system

artifact:strand:strands.java.source#1.0.1

artifact:module:target/module

artifact:strand:strands.java.compile#2.0

Rulebase

SourceRules

CompileRules

Parameters

java.compile.compiler=jikes

Working
Memory

Fact1
Fact2
Fact3

Other

version=1.3.2

Initial
Context

RDF OSGi

RDF for component URI

artifact:modules:my/impl artifact:modules:my/apiartifact:rdf:ops4j/dependencies/test#1.0

"artifact:sheet:silk/java/org.ops4j.silk.sheet.java.module#0.1.0.alpha"artifact:rdf:ops4j/buildsheet#1.0

artifact:rdf:ops4j/has#1.0
artifact:rdf:ops4j/parameter#1.0

"java.compile.compiler"

"jikes"

artifact:rdf:ops4j/name#1.0

artifact:rdf:ops4j/value#1.0

Example RDF (N3)

@prefix ops4j: <http://www.ops4j.org/ns/2005/silk> .
@prefix ops4j_modules: <http://scm.ops4j.org/repos/ops4j/projects/rdftest/modules> .
<http://scm.ops4j.org/repos/ops4j/projects/rdftest/modules/module1>
 ops4j:name
 "Module1" ;
 ops4j:version
 "1.0.4.alpha" .
 ops4j:description
 "the first module" ;
 ops4j:buildsheet
 "artifact:sheet:silk/java/org.ops4j.silk.sheet.java.module#0.1.0.alpha" ;
 ops4j:dependsOn
 <http://scm.ops4j.org/repos/ops4j/projects/rdftest/modules/module2> ;
 ops4j:has
 [a ops4j:parameter ;
 ops4j:key
 "java.source.location" ;
 ops4j:value
 "src/java"
] ;
<http://scm.ops4j.org/repos/ops4j/projects/rdftest/modules/module2>
 ops4j:description
 "second module" ;
 ops4j:version
 "3.8.1" .

Silk – build sheet

<silk:sheet
 xmlns:silk="http://www.ops4j.org/ns/2005/silk/sheet"
>

 <silk:name>JavaModule</silk:name>

 <silk:description xml:lang="en" >
This BuildSheet builds a Java module. The following features are implemented;
 * Picks up Java sources from any URL(s).
 * Compiles these sources in a single pass Java compile.
 * Picks up Java unittest (JUnit) from any URL(s).
 * Creates a Junit report and publishes it as an artifact.
 * Executes JavaDoc on the sources and publishes that as an artifact.
 * Package the resulting classes and resources into a Jar and publish that as
 an artifact.
 </silk:description>

 <silk:strands>
 <silk:uri>artifact:jar:silk/java/org.ops4j.silk.strands.java.module#1.0.0</silk:uri>
 <silk:uri>artifact:jar:silk/java/org.ops4j.silk.strands.java.source#1.0.0</silk:uri>
 <silk:uri>artifact:jar:silk/java/org.ops4j.silk.strands.java.compile#1.0.3</silk:uri>
 <silk:uri>artifact:jar:silk/java/org.ops4j.silk.strands.java.junit#1.1.0</silk:uri>
 <silk:uri>artifact:jar:silk/java/org.ops4j.silk.strands.java.javadoc#1.0.0</silk:uri>
 <silk:uri>artifact:jar:silk/java/org.ops4j.silk.strands.java.jar#1.0.3</silk:uri>
 <silk:uri>artifact:jar:silk/java/org.ops4j.silk.strands.java.publish-artifact#1.0.3</silk:uri>
 </silk:strands>

</silk:sheet>

Silk – example ruleset (compile)

<?xml version="1.0" encoding="UTF-8" ?>

<rule-set name="java compile rules"
xmlns="http://drools.org/rules"
xmlns:java="http://drools.org/semantics/java"
xmlns:groovy="http://drools.org/semantics/groovy"
xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
xs:schemaLocation="http://drools.org/rules rules.xsd

 http://drools.org/semantics/java java.xsd">

<rule name="Compile Raw Java Sources">
<parameter identifier="params">

<class>org.ops4j.silk.strands.java.compile.Parameters</class>
</parameter>
<parameter identifier="source">

<class>org.ops4j.silk.strands.java.source.RawSourceFact</class>
</parameter>

 <java:condition>source.getLastModified()>new
File(“target”).lastModified()</java:condition>

<groovy:consequence>
 System.out.println("compiling: " + source.getMainLocation());

def sourceDir = new File(source.getMainLocation());
def ant = new AntBuilder();
def targetDir = 'classes';
ant.mkdir(dir:targetDir);
ant.javac(srcdir:sourceDir.getAbsolutePath(), destdir:targetDir,

compiler:params.getCompilerType());
drools.assertObject(new RawCompileFinishedFact());

</groovy:consequence>
</rule>

</rule-set>

Parameters

Action

Resources

OPS4j
 http://www.ops4j.org
 general@lists.ops4j.org

OSGi
 http://www.osgi.org
 http://eclipsercp.org/
 http://eclipse.org/equinox/documents/osgicongress2005/mcaffer

_1012_1530.pdf

Drools
 http://drools.codehaus.org

JSR 277
 http://www.jcp.org/en/jsr/detail?id=277

http://www.ops4j.org/
http://www.osgi.org/
http://drools.codehaus.org/

